RedShift红移算法

一文解读零知识证明最新进展:RedShift红移算法

写在前面

伴随着区块链的技术发展,零知识证明(ZKP,Zero Knowledger Proof)技术先后在隐私和 Layer2 扩容领域得到越来越多的应用,技术也在持续的迭代更新。从需要不同的 Trust Setup 的 ZKP(例如Groth16),到需要一次 Trust Setup 同时支持更新的 ZKP(例如Plonk),再到不需要 Trust Setup 的 ZKP(例如 STARK),ZKP 算法逐渐走向去中心化,从依赖经典 NP 问题,到不依赖任何数学难题,ZKP 算法逐渐走向抗量子化。

我们当然希望,一个不需要 Trust Setup 同时也不依赖任何数学难题、具有抗量子性的 ZKP 算法也具有较好的效率和较低的复杂度(STARK 的证明太大),它就是 REDSHIFT。


REDSHIFT

《REDSHIFT: Transparent SNARKs from List Polynomial Commitment IOPs》,从名字可以可出,它是基于 List 多项式承诺且具有透明性的 SNARK 算法。算法本身和 PLONK 有大部分的相似之处,唯一不同的是多项式承诺的原语不同。下面先简单的通过一张表格来展示 REDSHIFT 和 PLONK 算法的异同之处,具体如下:

因此,只要对 PLONK 算法有深入了解的读者,相信再理解 REDSHIFT 算法,将是一件相对简单的事。ZKSwap团队在此之前已经对 PLONK 算法进行了深入的剖析,我们在文章《零知识证明算法之 PLONK --- 电路》详细的分析了 PLONK 算法里,关于电路部分的详细设计,包括表格里的《Statement -> Circuit -> QAP》过程,并且还详细描述了 PLONK 算法里,关于“Permutation Check”的原理及意义介绍,文章零知识证明算法之 PLONK --- 协议对 PLONK 的协议细节进行了剖析,其中多项式承诺( Polynomial Commitment)在里面发挥了重要的作用:保持确保算法的简洁性和隐私性。

我们知道,零知识证明算法的第一步,就是算术化(Arithmetization),即把 prover 要证明的问题转化为多项式等式的形式。如若多项式等式成立,则代表着原问题关系成立,想要证明一个多项式等式关系是否成立比较简单,根据 Schwartz–Zippel 定理可推知,两个最高阶为 n 的多项式,其交点最多为 n 个。

换句话说,如果在一个很大的域内(远大于 n)随机选取一个点,如果多项式的值相等,那说明两个多项式相同。因此,verifier 只要随机选取一个点,prover 提供多项式在这个点的取值,然后由 verifier 判断多项式等式是否成立即可,这种方式保证了隐私性。

然而,上述方式存在一定的疑问,“如何保证 prover 提供的确实是多项式在某一点的值,而不是自己为了能保证验证通过而特意选取的一个值,这个值并不是由多项式计算而来?”为了解决这一问题,在经典 snark 算法里,利用了 KCA 算法来保证,具体的原理可参见 V 神的 zk-snarks 系列。在 PLONK 算法里,引入了多项式承诺(Polynomial Commitment)的概念,具体的原理可在“零知识证明算法之 PLONK --- 协议”里提到。

简单来说,算法实现了就是在不暴露多项式的情况下,使得 verifier 相信多项式在某一点的取值的确是 prover 声称的值。两种算法都可以解决上述问题,但是通信复杂度上,多项式承诺要更小,因此也更简洁。

协议

下面将详细介绍 REDSHIFT 算法的协议部分,如前面所述,该算法与 PLONK 算法有很大的相似之处,因此本篇只针对不同的部分做详细介绍;相似的部分将会标注出来方便读者理解,具体如下图所示:

协议的 1-6 步骤在 PLONK 的算法设计里都有体现,这里着重分析一下后续的第 7 步骤。

在 PLONK 算法里,prover 为了使 verifier 相信多项式等式关系的成立,由 verifier 随机选取了一个点,然后 prover 提供各种多项式(包括 setup poly、constriant ploy、witness poly)的 commitment,由于使用的 Kate commitment 算法需要一次 Trust Setup 并依赖于离散对数难题,因此作为 PLONK 算法里的子协议,PLONK 算法自然也需要 Trust Setup 且依赖于离散对数难题。

在 REDSHIFT 协议里,多项式的 commitment 是基于默克尔树的(简单讲,计算多项式在域 H 上的所有值,并当作默克尔树的叶子节点,最终形成的根,即为 commitment)。若 prover 想证明多项式在某一个或某些点的值,证明方只需要根据这些值插值出具体的多项式,然后和原始的多项式做商并且证明得到商也是个多项式(阶是有限制的)即可。

当然为了保护隐私,需要对原始多项式做隐匿处理,类似于上图协议中的第一步。在实际设计中,为了方便 FRI 协议的运行,往往设计原始多项式的阶 d = 2^n + k (其中 k = log(n))。

24小时热点

热点专题

NFT艺术品到底是什么?

Beeple,“EVERYDAYS: THE FIRST 5 ...

2320904

Opera House

了解CHIA这篇就够了

这些清单旨在作为信息来源和研究的出发点,为你的研究提供常识性 ...

636559

Kusama 测试网

什么是 Infura?

11 月 11 日,因以太坊和 IPFS 的 API 服务供 ...

626973

IDG资本

OpenSea 为例子教大家如何购买 NFT

就如同流动性挖矿刚起步时候一样,大多数用户并不了解 NFT ...

609663

CryptoSpells

绿地集团数字化战略的NFT形象——8302款无聊猿!

30年前,绿地还是一家注册资本2000万元的小型绿化公司,历 ...

493829

Bybit

什么是私钥?

私钥是怎么来的,它跟你的密码学货币资产有何关联。

486042

芝麻开门交易所

2024年模因币牛巿SHIB是否能达到1美元?市场另外3个meme币也在热卖

SHIB是仅次于DOGE的第二大流行模因币,它能否达到1美元 ...

476086

Business2Community

数字人直播软件多少钱

数字人直播软件根据您使用的平台、功能范围不同,价格也不尽相同 ...

459247

MXC交易所

被朋友骗去弄数字货币

  有一次,一个朋友突然给我说他有一种可以赚钱的新方法,他说 ...

449990

DigiFinex

链圈百科:环境影响评价信用平台

环境影响评价信用平台是指一种使用信用技术来评估环境影响并对社 ...

417532

Tokhun